Molecular interactions between HNF4a, FOXA2 and GABP identified at regulatory DNA elements through ChIP-sequencing
نویسندگان
چکیده
Gene expression is regulated by combinations of transcription factors, which can be mapped to regulatory elements on a genome-wide scale using ChIP experiments. In a previous ChIP-chip study of USF1 and USF2 we found evidence also of binding of GABP, FOXA2 and HNF4a within the enriched regions. Here, we have applied ChIP-seq for these transcription factors and identified 3064 peaks of enrichment for GABP, 7266 for FOXA2 and 18783 for HNF4a. Distal elements with USF2 signal was frequently bound also by HNF4a and FOXA2. GABP peaks were found at transcription start sites, whereas 94% of FOXA2 and 90% of HNF4a peaks were located at other positions. We developed a method to accurately define TFBS within peaks, and found the predicted sites to have an elevated conservation level compared to peak centers; however the majority of bindings were not evolutionary conserved. An interaction between HNF4a and GABP was seen at TSS, with one-third of the HNF4a positive promoters being bound also by GABP, and this interaction was verified by co-immunoprecipitations.
منابع مشابه
Stability and evolution of transcriptional regulatory networks
How do transcriptional regulatory networks elicit stable gene expression patterns? How do such networks evolve? These topics have kept molecular biologists occupied for years. The recent elucidation of regulatory networks that control endoderm development, including ‘genomic location analysis’ of transcription factors in endoderm-derived liver cells, provides more comprehensive views than in th...
متن کاملIdentification of a Regulatory Variant That Binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS Locus
Many of the type 2 diabetes loci identified through genome-wide association studies localize to non-protein-coding intronic and intergenic regions and likely contain variants that regulate gene transcription. The CDC123/CAMK1D type 2 diabetes association signal on chromosome 10 spans an intergenic region between CDC123 and CAMK1D and also overlaps the CDC123 3'UTR. To gain insight into the mole...
متن کاملTET-Catalyzed 5-Hydroxymethylation Precedes HNF4A Promoter Choice during Differentiation of Bipotent Liver Progenitors
Understanding the processes that govern liver progenitor cell differentiation has important implications for the design of strategies targeting chronic liver diseases, whereby regeneration of liver tissue is critical. Although DNA methylation (5mC) and hydroxymethylation (5hmC) are highly dynamic during early embryonic development, less is known about their roles at later stages of differentiat...
متن کاملLhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development.
Gene regulatory networks controlling functional activities of spatially and temporally distinct endodermal cell populations in the early mouse embryo remain ill defined. The T-box transcription factor Eomes, acting downstream from Nodal/Smad signals, directly activates the LIM domain homeobox transcription factor Lhx1 in the visceral endoderm. Here we demonstrate Smad4/Eomes-dependent Lhx1 expr...
متن کاملGenome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells
Midbrain dopamine neuronal progenitors develop into heterogeneous subgroups of neurons, such as substantia nigra pars compacta, ventral tegmental area and retrorubal field, that regulate motor control, motivated and addictive behaviours. The development of midbrain dopamine neurons has been extensively studied, and these studies indicate that complex cross-regulatory interactions between extrin...
متن کامل